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Introduction ∣∣∣ p. 5
Work presented as a doctoral thesis at l’Université d’Orsay.

By Hodge, the cohomology space Hn(X ,C) of a compact Kähler variety X is endowed
with a “Hodge structure” of weight n, i.e. a natural bigrading

Hn(X ,C)= ⊕
p+q=n

Hp,q

that satisfies Hp,q = Hq,p. We will show here that the complex cohomology of a non-
singular, not necessarily compact, algebraic variety is endowed with a structure of a
slightly more general type, which presents Hn(X ,C) as a “successive extension” of Hodge
structures of decreasing weights, contained between 2n and n, whose Hodge numbers
hp,q = dimHp,q, are zero for both p > n and q > n.

The reader will find an explanation in [5] of the yoga that underlies this construction.
∣∣∣ p. 6

The proof, which is essentially algebraic, relies on one hand on Hodge theory, and
on the other on Hironaka’s resolution of singularities, which allows us, via a spectral
sequence, “to express” the cohomology of a non-singular quasi-projective algebraic variety
in terms of the cohomology of non-singular projective varieties.

Section 1 contains, apart from reminders on filtrations gathered together for the ease
of the reader, two key results:

a) Theorem 1.2.10, which will only be used via its corollary, Theorem 2.3.5, which gives
the fundamental properties of “mixed Hodge structures.”

b) The “two filtrations lemma,” Lemma 1.3.16.
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1 Filtrations

Section 2 recalls Hodge theory and introduces mixed Hodge structures.
The heart of this work is §3.2, which defines the mixed Hodge structure of Hn(X ,C),

and establishes some degenerations of spectral sequences.
Section 4 gives diverse applications, all following from Theorem 4.1.1 and the theory

of the (K /k)-trace, for the resulting Hodge structures (Corollary 4.1.2). The principal ones
are Theorem 4.2.6 and Corollary 4.4.15.

1 Filtrations

1.1 Filtered objects

1.1.1. Let A be an abelian category.

We will be considering Z-filtrations, finite, in general, on the objects of A :

1.1.2. A decreasing (resp. increasing) filtration F of an object A of A is a family (Fn(A))n∈Z
(resp. (Fn(A))n∈Z) of sub-objects of A satisfying

∀n,m n É m =⇒ Fm(A)⊂ Fn(A)

(resp. n É m =⇒ Fn(A)⊂ Fm(A)).
A filtered object is an object endowed with a filtration. When there is no chance of

confusion, we often denote by the same letter filtrations on different objects of A .
If F is a decreasing (resp. increasing) filtration on A, then we set F∞(A) = 0 and

F−∞(A)= A (resp. F−∞(A)= 0 and F∞(A)= A).
The shifted filtrations of a decreasing filtration W are defined by

W[n]p(A)=Wn+p(A)

for n ∈Z.

1.1.3. If R is a decreasing (resp. increasing) filtration of A, then the Fn(A)= F−n(A) (resp
the Fn(A) = F−n(A)) form an increasing (resp. decreasing) filtration of A. This allows us

∣∣∣ p. 7
in principal to consider only decreasing filtrations; unless otherwise explicitly mentioned,
when we say “filtration” we always mean “decreasing filtration”.

1.1.4. A filtration F of A is said to be finite if there exist n and m such that Fn(A)= A and
Fm(A)= 0.

1.1.5. A morphism from a filtered object (A,F) to a filtered object (B,F) is a morphism f
from A to B that satisfies f (Fn(A))⊂ Fn(B) for all n ∈Z.

Filtered objects (resp. finite filtered objects) of A form an additive category in which
inductive limits and finite projective limits exist (and thus kernels, cokernels, images, and
coimages of a morphism).
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1 Filtrations

A morphism f : (A,F)→ (B,F) is said to be strict, or strictly compatible with the filtra-
tions, if the canonical arrows from Coim( f ) to Im( f ) is an isomorphism of filtered objects
(cf. (1.1.11)).

1.1.6. Let (−)◦ be the contravariant identity functor from A to the dual category A ◦. If
(A,F) is a filtered object of A , then the (A/Fn(A))◦ can be identified with sub-objects of
A◦. The dual filtration on A◦ is defined by

Fn(A◦)= (A/F1−n)◦.

The double dual of (A,F) can be identified with (A,F). This construction identifies the
dual of the category of filtered objects of A with the category of filtered objects of A ◦.

1.1.7. If (A,F) is a filtered object of A , then its associated graded is the object of A Z

defined by
Grn(A)= Fn(A)/Fn+1(A).

The convention (1.1.6) is justified by the simple formula

Grn(A◦)=Gr−n(A)◦

which follows from the self-dual diagram !!TO-DO: diagram (1.1.7.1)!!

1.1.8. Let (A,F) be a filtered object, and j : X ,→ A a sub-object of A. The filtration induced
by F (or simply induced filtration) on X is the unique filtration on X such that j is strictly
compatible with the filtrations; we have

Fn(X )= j−1(Fn(A))= X ∩Fn(A).

Dually, the quotient filtration on A/X (the unique filtration such that p : A → A/X is
strictly compatible with the filtrations) is given by

Fn(A/X )= p(Fn(A))∼= (X +Fn(A))/X ∼= Fn(A)/(X ∩Fn(A)).

Lemma 1.1.9. If X and Y are sub-objects of A, with X ⊂ Y , then on Y /X ∼−→ Ker(A/X →
∣∣∣ p. 8

A/Y ) the quotient filtration of Y agrees with that induced by that of A/X . In the diagram
!!TO-DO: diagram!! the arrows are strict.

1.1.10. We call the filtration (1.1.9) on Y /X the filtration induced by that of A (or simply
the induced filtration). By (1.1.9), its definition is self-dual.

In particular, if Σ : A
f−→ B G−→ C is a !!TO-DO: o-suite?!! sequence, and if B is filtered,

then H(Σ)=Ker(g)/Im( f )=Ker(Coker( f )→Coim(g)) is endowed with a canonical induced
filtration.

The reader can show that:
Proposition 1.1.11.

—
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1 Filtrations

i. Let f : (A,F)→ (B,F) be a morphism of filtered objects with finite filtrations. For f to
be strict, it is necessary and sufficient that the sequence

0→Gr(Ker( f ))→Gr(A)→Gr(B)→Gr(Coker( f ))→ 0

be exact.

ii. Let σ : (A,F) → (B,F) → (C,F) be a !!TO-DO: o-suite?!! sequence of strict mor-
phisms. We then have

H(Gr(Σ))∼=Gr(H(Σ))

canonically. In particular, if Σ is exact in A , then Gr(Σ) is exact in A Z.

In a category of modules, to say that a morphism f : (A,F) → (B,F) is strict implies
that every b ∈ B of filtration Ê n (i.e. b ∈ Fn(B)) that is in the image of A is already in the
image of Fn(A):

f (Fn(A))= f (A)∩Fn(B).

1.1.12. If ⊗ : A1× . . .×An →B is a multiadditive right-exact functor, and if A i is an object
of finite filtration of Ai (for 1É i É n), then we define a filtration on

⊗n
i=1 A i by

Fk(
n⊗

i=1
A i)=

∑∑
ki=k

Im(
n⊗

i=1
Fki (A i)→

n⊗
i=1

A i)

(a sum of sub-objects).
Dually, if H is left-exact, then we set

Fk(H(A i))=
⋂∑
ki=k

Ker(H(A i)→ H(A i/Fki (A i))). ∣∣∣ p. 9
If H is exact, then the two definitions are equivalent.
We extend these definitions to contravariant functors in certain variables by (1.1.6).

In particular, for the left-exact functor Hom, we set

Fk(Hom(A,B))= { f : A → B | f (Fn(A))⊂ Fn+k(B) ∀n}.

We thus have
Hom((A,F), (B,F))= F0(Hom(A,B)).

Under the above hypotheses, we have obvious morphisms

n⊗
i=1

Gr(A i)→Gr(
n⊗

i=1
A i)

GrH(A i)→ H(Gr(A i)).

If H is exact, then these are isomorphisms and inverse to one another.
These constructions are compatible with composition of functors, in a sense whose

details we leave to the reader.
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1 Filtrations

1.2 Opposite filtrations

1.2.1. Let A be an object of A endowed with filtrations F and G. By definition, Grn
F (A)

is a quotient of a sub-object of A and, as such, is endowed with a filtration induced by G
(1.1.10). Passing to the associated graded defines a bigraded object (Grn

G Grm
F (A))n,m∈Z. By

a lemma of Zassenhaus, Grn
G Grm

F (A) and Grm
F Grn

G(A) are canonically isomorphic: if we
define the induced filtrations (1.1.10) as quotient filtrations of the induced filtrations on a
sub-object, then we have

Grn
G Grm

F (A)∼= (Fm(A)∩Gn(A))/((Fm+1(A)∩Gn(A))+ (Fm(A)∩Gn+1(A)))

=
Grm

F Grn
G(A)∼= (Gn(A)∩Fm(A))/((Gn+1(A)∩Fm(A))+ (Gn(A)∩Fm+1(A)))

1.2.2. Let H be a third filtration of A. It induces a filtration on GrF (A), and thus on
GrG GrF (A). It also induces a filtration on GrF GrG(A). We note that these filtrations do
not in general correspond to one another under the isomorphism (1.2.1). In the expression
GrH GrG GrF (A), G and H thus play a symmetric role, but not F and G.

1.2.3. Two finite filtrations F and F on A are said to be n-opposite if Grp
F Grq

F
(A) = 0 for

p+ q ̸= n.

1.2.4. If Ap,q is a bigraded object of A such that

a. Ap,q = 0 except for a finite number of pairs (p, q), and
b. Ap,q = 0 for p+ q ̸= n ∣∣∣ p. 10
then we define two n-opposite filtrations of A =∑

p,q Ap,q by setting

F p(A)= ∑
p′Êp

Ap′,q′
(1.2.4.1)

F
q
(A)= ∑

q′Êq
Ap′,q′

. (1.2.4.2)

We have
Grp

F Grq
F

(A)= Ap,q. (1.2.4.3)

Conversely:

Proposition 1.2.5.
—

i. Let F and F be finite filtrations on A. For F and F to be n-opposite, it is necessary
and sufficient that, for all p, q,

[p+ q = n+1] =⇒ [F p(A)⊕F
q
(A) ∼−→ A].

5 of 18



1 Filtrations

ii. If F and F are n-opposite, and if we set{
Ap,q = 0 for p+ q ̸= n
Ap,q = F p(A)∩F

q
(A) for p+ q = n

then A is the direct sum of the Ap,q, and F and F come from the bigrading Ap,q of A
by the procedure of (1.2.4).

!!TO-DO: why is the following proof not appearing in the PDF version?!!

1.2.6. The constructions (1.2.4) and (1.2.5) establish equivalences of categories that are
quasi-inverse to one another between objects of A endowed with two finite n-opposite
filtrations and bigraded objects of A of the type considered in (1.2.4).

Definition 1.2.7. Three finite filtrations W , F, and F on A are said to be opposite if
∣∣∣ p. 11

Grp
F Grq

F
Grn

W (A)= 0

for p+ q+n ̸= 0.
This condition is symmetric in F and F. It implies that F and F induce on Wn(A)/Wn+1(A)

two (−n)-opposite filtrations. We set

Ap,q =Grp
F Grq

F
Gr−p−q

F (A)

whence decompositions (1.2.4), (1.2.5)

Wn(A)/Wn+1(A)= ⊕
p+q=−n

Ap,q (1.2.7.1)

which makes GrW (A) into a bigraded object.

Lemma 1.2.8. Let W , F, and F be three finite opposite filtrations, and σ a sequence
(pi, qi)iÊ0 pairs of integers satisfying

a. pi É p j and qi É q j for i Ê j, and
b. pi + qi = p0 + q0 − i+1 for i > 0.

Set p = p0, q = q0, n =−p− q, and

Aσ =
(∑

0Éi
(Wn+i(A)∩F pi (A))

)
∩

(∑
0Éi

(Wn+i(A)∩F
qi (A))

)
.

Then the projection from Wn(A) to Grn
W (A) induces an isomorphism

Aσ
∼−→ Ap,q ⊂Grn

W (A).
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1 Filtrations

Proof. We will prove by induction on k the following claim:
(∗k) The projection from Wn(A)/Wn+k to Grn

W (A) induces an isomorphism from((∑
i<k

(Wn+i(A)∩F pi (A))+Wn+k(A)

)
∩

(∑
i<k

(Wn+i(A)∩F
qi (A))+Wn+k(A)

))
/Wn+k(A)

to Ap,q ⊂Grn
W (A).

For k = 1, this is exactly the definition of Ap,q.
By (1.2.5), (i) we have

F pk (Grn+k
W (A))⊕F

qk (Grn+k
W (A)) ∼−→Grn+k

W (A). (1.2.8.1)

Set
B = ∑

i<k
(Wn+i(A)∩F pi (A))

C = ∑
i<k

(Wn+i(A)∩F
qi (A))

B′ = (Wn+k(A)∩F pk (A))+Wn+k+1(A)

C′ = (Wn+k(A)∩F
qk (A))+Wn+k+1(A)

D =Wn+k(A)

E =Wn+k+1(A). ∣∣∣ p. 12
Equation (1.2.8.1) can then be written as

B′+C′ = D
B′∩C′ = E.

We also have, since pk É pi (for i É k),

B∩D ⊂ F pk (A)∩Wn+k(A)⊂ B′

and, since qk É qi (for i É k),

C∩D ⊂ F
qk (A)∩Wn+k(A)⊂ C′.

The claim (∗k+1) and then follows from (∗k) and the following lemma.

Lemma 1.2.9. Let B, C, B′, C′, D, and E be sub-objects of A. Suppose that

B′+C′ = D B′∩C′ = E
B∩D ⊂ B′ C∩D ⊂ C′.

Then
((B+B′)∩ (C+C′))/E ∼−→ ((B+D)∩ (C+D))/D.
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1 Filtrations

Proof. To prove surjectivity, we write

((B+B′)∩ (C+C′))+D = (((B+B′)∩ (C+C′))+B′)+C′

= ((B+B′)∩ (C+C′+B′))+C′

= (B+B′+C′)∩ (C+C′+B′)
= (B+D)∩ (C+D).

To prove injectivity, we write

(B+B′)∩ (C+C′)∩D = ((B+B′)∩D)∩ ((C+C′)∩D).

Since B′ ⊂ D, we have
(B+B′)∩D = (B∩D)+B′

= B′

and similarly
(C+C′)∩D = C′

and
(B+B′)∩ (C+C′)∩D = B′∩C′

= E.

This finishes the proof of (1.2.8), noting that (1.2.8) is equivalent to (∗k) for large k.
Theorem 1.2.10.

Let A be an abelian category, and provisionally denote by A ′ the category of objects
of A endowed with three opposite filtrations W , F, and F. The morphisms in A ′ are the
morphisms of A that are compatible with the three filtrations.

i. A ′ is an abelian category.
ii. The kernel (resp. cokernel) of an arrow f : A → B in A ′ is the kernel (resp. cokernel)

of f in A , endowed with the filtrations induced by those of A (resp. the quotients of
those of B).

iii. Every morphism f : A → B in A ′ is strictly compatible with the filtrations W , F, and
F; the morphism GrW ( f ) is compatible with the bigradings of GrW (A) and GrW (B);
the morphisms GrF ( f ) and GrF ( f ) are strictly compatible with the filtration induced
by W .

iv. The “forget the filtrations” functors, GrW , GrF , and GrF , and

GrW GrF ≃GrF GrW

≃GrF GrF GrW

≃GrF GrW ≃GrW GrF

from A ′ to A are exact. ∣∣∣ p. 13
Denote by σ0(p, q) and σ1(p, q) the sequences

σ0(p, q)= (p, q), (p, q), (p, q−1), (p, q−2), (p, q−3), . . .

σ0(p, q)= (p, q), (p, q), (p−1, q), (p−2, q), (p−3, q), . . .
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1 Filtrations

and, with the notation of (1.2.8), set

Ap,q
i = Aσi(p,q) (for i = 0,1).

If f : A → B is compatible with W , F, and F, then we have

f (Ap,q
i )⊂ Bp,q

i (for i = 0,1). (1.2.10.1)

Claim (iii) then follows from the following lemma:

Lemma 1.2.11. The Ap,q
i give a bigrading of A. We have

Wn(A)= ∑
n+p+qÉ0

Ap,q
i (for i = 0,1) (1.2.11.1)

F p(A)= ∑
p′Êp

Ap′,q′
0 (1.2.11.2)

F
q
(A)= ∑

q′Êq
Ap′,q′

1 . (1.2.11.3)

Proof. By symmetry, it suffices to prove the claims concerning i = 0. Set A0 =⊕
Ap,q

0 and
define filtrations W and F on A0 by the equations of (1.2.11). The canonical map i from
A0 to A is compatible with the filtrations W and F. Furthermore, by (1.2.8), GrW (i) is an
isomorphism, and induces isomorphisms of graded objects∑

p+q=n
Ap,q

0
∼−→Gr−n

W (A)= ∑
p+q=n

Ap,q. (1.2.11.4)

The morphism i is thus an isomorphism, and the Ap,q
0 give a bigrading of A.

Equation (1.2.11.1) then says that GrW (i) is an isomorphism. By (1.2.11.4), GrF GrW (i)
is an isomorphism, and thus so too are GrW GrF (i) and GrF (i). Equation (1.2.11.2) then
follows.

1.2.12. We now prove (1.2.10). Let f : A → B in A ′ and endow K = Ker( f ) with the
filtrations induced by those of A. By (1.2.11), GrW (K) ,→ GrW (A); furthermore, the filtra-
tion F (resp. F) on K induces on GrW (K) the inverse image filtration of the filtration F
on GrW (A). The sub-object GrW (K) of GrW (A) is then compatible with the bigrading of
GrW (A):

GrW (K)=⊕
p,q

(GrW (K)∩ Ap,q).

We thus deduce that

Grp
F Grq

F
Grn

W (K) ,→Grp
F Grq

F
Grn

W (A);

the filtrations of W , F, and F on K are thus opposite, and K is a kernel of f in A ′. This,
∣∣∣ p. 14

combined with the dual result, proves (ii).
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1 Filtrations

If f is an arrow of A ′, then the canonical morphism from Coim( f ) to Im( f ) is an
isomorphism in A ; by (iii), it is also an isomorphism in A ′, which is thus abelian.

The “forget the filtrations” functor is exact by (ii). The exactness of the other functors
in (iv) follows immediately from (ii), (iii), and (1.1.11), (i) or (ii).

1.2.13. Let A be an object of A endowed with a finite increasing filtration W•, and two
finite decreasing filtrations F and F. The construction (1.1.3) associates to W• a decreasing
filtration W•. We say that the filtrations W•, F, and F are opposite if the filtrations W•, F,
and F are, i.e. if, for all n, the filtrations induced by F and F on

GrW
n (A)=Wn(A)/Wn−1(A)

are n-opposite.
Theorem (1.2.10) translates trivially to this variation.

1.3 The two filtrations lemma

1.3.1. Let K be a differential complex of objects of A , endowed with a filtration F. The
filtration is said to be biregular if it induces a finite filtration on each component of K .

We recall the definition of the terms Epq
r (K ,F), or simply Epq

r , of the spectral sequence
defined by F. We set

Zpq
r =Ker(d : F p(K p+q)→ F p+q+1/F p+r(K p+q+1))

and dually we define Bpq
r by the formula

K p+q/Bpq
r =Coker(d : F p−r+1(K p+q+1)→ K p+q/F p+1(K p+q)).

These formulas still make sense for r =∞.
We note that the use here of the notation Bpq

r is different to that of Godement [6].
We have, by definition:

Epq
r = Im(Zpq

r → K p+q/Bpq
r ) (1.3.1.1)

= Zpq
r /(Bpq

r ∩Zpq
r ) (1.3.1.2)

=Ker(K p+q/Bpq
r → K p+q/(Zpq

r +Bpq
r )). (1.3.1.3)

We can thus write

Bp•
r ∩Zp•

r := (dF p−r+1 +F p+1)∩ (d−1F p+r ∩F p)

= (dF p−r+1 ∩F p)+ (F p+1 ∩d−1F p+r)
(1.3.1.4)

since dF p−r+1 ⊂ d−1F p+r and F p+1 ⊂ F p.
∣∣∣ p. 15

For r <∞, the Er form a complex graded by the degree p− r(p+ q), and Er+1 can be
expressed as the cohomology of this complex:

Epq
r+1 =H(Ep−r,q+r−1

r
dr−→ Epq

r
dr−→ Ep+r,q−r+1

r ). (1.3.1.5)
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1 Filtrations

For r = 0, we have
E••

0 =Gr•F (K•). (1.3.1.6)

Proposition 1.3.2.
Let K be a complex endowed with a biregular filtration F. The following conditions are

equivalent:

i. The spectral sequence defined by F degenerates (E1 = E∞).
ii. The morphisms d : K i → K i+1 are strictly compatible with the filtrations.

Proof. We will prove this in the case where A is a category of modules. For fixed p and
q, the hypothesis that the arrows dr with domains Epq

r be zero for r Ê 1 implies that, if
x ∈ F p(K p+q) satisfies dx ∈ F p+1(K p+q+1), then there exists y ∈ K p+q such that dy= 0 and
such that x and y have the same image in Epq

1 . Modifying y by a boundary, and setting
z = x− y, we then have

∀x ∈ F p(K p+q)
[
dx ∈ F p+1(K p+q+1) =⇒ ∃z s.t. z ∈ F p+1(K p+q) and dz = dx

]
or, in other words,

F p+1(K p+q+1)∩dF p(K p+q)= dF p+1(K p+q). (1)

If this condition is satisfied for arbitrary p and q, then by induction on r we have

F p+r ∩dF p = dF p+r

which, for large p+ r, can be written as

F p ∩dK = dF p. (2)

Claim (2) trivially implies (1), and is equivalent to (ii), which proves the proposition.

1.3.3. If (K ,F) is a filtered complex, we denote by Dec(K) the complex K endowed with the
shifted filtration

Dec(F)pKn = Zp+n,−p
1 .

This filtration is compatible with the differentials:

dZp+n,−p
1 ⊂ F p+n+1(Kn+1)∩Ker(d)

⊂ Zp+n+1,−p
∞

⊂ Zp+n+1,−p
1 .

Since
Zp+1+n,−p−1

1 ⊂ F p+1+n(Kn)

⊂ Bp+n,−p
1

⊂ Zp+n,−p
1

(1.3.3.1)
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1 Filtrations

the evident arrow from Zp+n,−p
1 /Zp+1+n,−p−1

1 to Zp+n,−p
1 /Bp+n,−p

1 is a morphism

u : Ep,n−p
0 (Dec(K))→ Ep+n,−p

1 (K). (1.3.3.2)

Proposition 1.3.4.
—

i. The morphisms (1.3.3.2) form a morphism of graded complexes from E0(Dec(K)) to
E1(K).

ii. This morphism induces an isomorphism on cohomology.
iii. It induces step-by-step (via (1.3.1.5)) isomorphisms of graded complexes Er(Dec(K)) ∼−→

Er+1(K) (for r Ê 1). ∣∣∣ p. 16
Proof. Let F ′ be the filtration on K defined by

F ′p(Kn)=Dec(F)p−n(Kn)= Zp,n−p
1 .

We trivially have isomorphisms

Ep,n−p
r (Dec(K))= Ep+n,−p

r+1 (K ,F ′) (1.3.4.1)

that are compatible with the dr and with (1.3.1.5). The map u comes from (1.3.4.1) and
from the identity map

(K ,F ′)→ (K ,F).

This proves (i), and it remains to show that, for r Ê 2,

Epq
r (K ,F ′) ∼−→ Epq

r (K ,F).

We have
Zpq

r (K ,F ′)= Zpq
r (K ,F) (for r Ê 1)

Zpq
r (K ,F ′)∩Bpq

r (K ,F ′)= Zpq
r (K ,F)∩Bpq

r (K ,F) (for r Ê 2)

and we can then apply (1.3.1.2).

1.3.5. The construction (1.3.3) is not self-dual. The dual construction consists of defining

Dec•(F)pKn = Bp+n−1,−p+1
1 .

We then have morphisms

Ep,n−p
0 (Dec(K))→ Ep+n,p

1 (K)→ Ep,n−p
0 (Dec•(K))

and, for r Ê 1, isomorphisms

Ep,n−p
r (Dec(K)) ∼−→ Ep+n,p

r+1 (K) ∼−→ Ep,n−p
r (Dec•(K)).

Recall that a morphism of complexes is said to be a quasi-isomorphism if it induces an
isomorphism on cohomology.
Definition 1.3.6.

—
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i. A morphism f : (K ,F) → (K ′,F ′) of filtered complexes with biregular filtrations is a
filtered quasi-isomorphism if GrF ( f ) is a quasi-isomorphism, i.e. if the Epq

1 ( f ) are
isomorphisms.

ii. A morphism f : (K ,F,W)→ (K ,F ′,W ′) of biregular bifiltered complexes is a bifiltered
quasi-isomorphism if GrF GrW ( f ) is a quasi-isomorphism.

1.3.7. Let K be a differential complex of objects of A , endowed with two filtrations F
and W . Let Epq

r be the spectral sequence defined by W . The filtration F induces on Epq
r

various filtrations, which we will compare.

1.3.8. Equation (1.3.1.2) identifies Epq
r with a quotient of a sub-object of K p+q. The Epq

r
term is thusly given by endowing with a filtration Fd induced by F, called the first direct
filtration.

1.3.9. Dually, Equation (1.3.1.3) identifies Epq
r with a sub-object of a quotient of K p+q,

whence a new filtration Fd∗ induced by F, called the second direct filtration.

Lemma 1.3.10. On E0 and E1, we have Fd = Fd∗ .
∣∣∣ p. 17

Proof. For r = 0,1, we have Bpq
r ⊂ Zpq

r , and we apply (1.1.9).

1.3.11.
Equation (1.3.1.5) identifies Epq

r+1 with a quotient of a sub-object of Epq
r . We define the

recurrent filtration Fr on the Epq
r by the conditions

i. On Epq
0 , Fr = Fd = Fd∗ .

ii. On Epq
r+1, the recurrent filtration is that induced by the recurrent filtration of Epq

r .

1.3.12. Definitions (1.3.8) and (1.3.9) still make sense for r = ∞. If the filtration on K
is biregular, then the direct filtrations on Epq

∞ coincide with those on Epq
r = Epq

∞ for large
enough r, and we define the recurrent filtration on Epq

∞ as agreeing with that on Epq
r for

large enough r.
The filtrations F and W each induce a filtration on H•(K), and E••∞ =Gr•W (H•(K)). The

filtration F on H•(K) then induces on Epq
∞ a new filtration.

Proposition 1.3.13.
—

i. For the first direct filtration, the morphisms dr are compatible with the filtrations. If
Epq

r+1 is considered as a quotient of a sub-object of Epq
r , then the first direct filtration

on Epq
r+1 is finer than the filtration F ′ induced by the first direct filtration on Epq

r Y we
have Fd(Epq

r+1)⊂ F ′(Epq
r+1).

ii. Dually, the morphisms dr are compatible with the second direct filtration, and the
second direct filtration on Epq

r+1 is less fine than the filtration induced by that of Epq
r .

13 of 18



1 Filtrations

iii. Fd(Epq
r )⊂ Fr(Epq

r )⊂ Fd∗ (Epq
r ).

iv. On Epq
∞ , the filtration induced by the filtration F of H•(K) (1.3.12) is finer than the

first direct filtration and less fine than the second.

Proof. Claim (i) is evident, (ii) is its dual, and (iii) follows by induction. The first claim of
(iv) is easy to verify, and the second is its dual.

1.3.14. We denote by Dec(K) (resp. Dec•(K)) the complex K endowed with the filtrations
Dec(W) and F (resp. Dec•(W) and F).

It is clear by (1.3.4.1) that the isomorphism (1.3.4) sends the first direct filtration on
Er(Dec(K)) to the second direct filtration on Er+1(K) (for r Ê 1). The dual isomorphism
(1.3.5) sends the second direct filtration on Er(Dec•(K)) to the second direct filtration on
Er+1(K).

Lemma 1.3.15.
If the filtration F is biregular, and if, on the Grp

W (K), the morphisms d are strictly
compatible with the filtration induced by F, then

i. The morphism (1.3.3.2) of graded complexes filtered by F

u : GrDec(W)(K)→ E1(K ,W)

is a filtered quasi-isomorphism.
ii. Dually, the morphism (1.3.5)

u : E1(K ,W)→GrDec•(W)(K)

is a filtered quasi-isomorphism.

Proof. It suffices, by duality, to prove (i).
∣∣∣ p. 18

By (1.3.3) and (1.3.4), the complex E1(K ,W) filtered by F is a quotient of the filtered
complex GrDec(W)(K). Let U be the filtered complex given by the kernel, which is acyclic
by (1.3.4), (ii). The long exact sequence in cohomology associated to the exact sequence of
complexes

0→GrF (U)→GrF (GrDec(W)(K))→GrF (E1(K ,W))→ 0

shows that u is a filtered quasi-isomorphism if and only if GrF (U) is an acyclic complex.
By (1.3.2), and since U is acyclic, this reduces to asking that the differentials of U be
strictly compatible with the filtration F. From (1.3.3.1) we obtain that U is the sum over
p of the complexes

(U p)n = Bp+n,−p
1 /Zp+1+n,−p−1

1

endowed with the filtration induced by F.
Each differential d of each of the complexes U p fits into a commutative diagram of

filtered objects of the following type, where, for simplicity, we have omitted the total or
complementary degree: !!TO-DO: diagram!! By hypothesis, the morphism (1) is strict.
Since the square (2) is exactly the canonical decomposition of (1), the arrow (3) is a fil-
tered isomorphism. The arrows of the trapezium (4) are isomorphisms; they are thus
filtered isomorphisms, since (3) is a filtered isomorphism. The fact that (5) is a filtered
isomorphism implies that d is strict. This proves the lemma.
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Theorem 1.3.16. Let K be a complex endowed with two filtrations, W and F, with the
filtration F biregular. Let r0 Ê 0 be an integer, and suppose that, for 0 É r < r0, the differ-
entials of the graded complex Er(K ,W) are strictly compatible with the filtration F. Then,
for r É r0 +1, Fd = Fr = Fd∗ on Epq

r .

Proof. We will prove the theorem by induction on r0. For r0 = 0, the hypothesis is empty,
and we apply (1.3.10) and (1.3.13), (iii). For r0 Ê 1, by the inductive hypothesis, we have
Fd = Fr = Fd∗ on Epq

r for r É r0.
∣∣∣ p. 19

By (1.3.15), the morphism u : E0(Dec(K)) → E1(K) is a filtered quasi-isomorphism. It
thus induces a filtered isomorphism from H•(Dec(K)) to H•(E1(K)):

u : (E1(Dec(K)),Fr) ∼−→ (E2(K),Fr).

Step-by-step, we thus deduce that the canonical isomorphism from Es(Dec(K)) to Es+1 (for
s Ê 1) is a filtered isomorphism for the recurrent filtration.

On E1(Dec(K)), Fr = Fd (1.3.10), and we already know (1.3.14) that u′ is a filtered
isomorphism

u′ : (E1(Dec(K)),Fd) ∼−→ (E2(K),Fd).

On E2(K), we thus have Fd = Fr. This, combined with the dual result, proves the
theorem for r0 = 1.

Suppose that r0 Ê 2. Then the arrows d1 of E1(K) are strictly compatible with the
filtrations, and thus so too are the arrows d0 of E0(Dec(K)) (indeed, u induces an isomor-
phism of spectral sequences, and we apply criterion (1.3.2)).

For 0 < s < r0 −1, the isomorphism (Es(Dec(K)),Fr) ∼= (Es+1(K),Fr) shows that the ds
are strictly compatible with the recurrent filtrations.

By the induction hypothesis, we thus have Fd = Fr on Es(Dec(K)) for s É s0. The
isomorphism (Es(Dec(K)),Fd) ∼= (Es+1(K),Fd) (1.3.13) then shows that Fd = Fr on Er(K)
for r É r0 +1. This, combined with the dual result, proves the theorem.

Corollary 1.3.17. Under the general hypotheses of (1.3.16), suppose that, for all r, the
differentials dr are strictly compatible with the recurrent filtrations on the Er. Then, on
E∞, the filtrations Fd , Fr, and Fd∗ agree, and coincide with the filtration induced by the
filtration F of H•(K).

Proof. This follows immediately from (1.3.16) and (1.3.13), (iv).

1.4 Hypercohomology of filtered complexes
In this section, we recall some standard constructions in hypercohomology. We do not use
the language of derived categories, which would be more natural here.

Throughout this entire section, by “complex” we mean “bounded-below complex.”

1.4.1. Let T be a left-exact functor from an abelian category A to an abelian category
B. Suppose that every object of A injects into an injective object; the derived functors
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Ri T : A →B are then defined. An object A of A is said to be acyclic for T if Ri T(A) = 0
for i > 0.

1.4.2. Let (A,F) be a filtered object with finite filtration, and TF the filtration of T A by its
sub-objects TF p(A) (these are sub-objects since T is left exact). If GrF (A) is T-acyclic, then
the F p(A) are T-acyclic as successive extensions of T-acyclic objects. The image under T
of the sequence

0→ F p+1(A)→ F p(A)→Grp(A)→ 0

is thus exact, and
∣∣∣ p. 20

GrFT T A ∼−→ T GrF A. (1.4.2.1)

1.4.3. Let A be an object endowed with finite filtrations F and W such that GrF GrW A are
T-acyclic. The objects GrF A and GrW A are then T-acyclic, as well as the Fq(A)∩W p(A).
The sequences

0→ T(Fq ∩W p+1)→ T(Fq ∩W p)→ T((Fq ∩W p)/(Fq ∩W p+1))→ 0

are thus exact, and T(Fq(Grp
W (A))) is the image in T(Grp

W (A)) of T(F p∩W q). The diagram

T(Fq ∩W p) −−−−−→ T(Fq Grp
W A) −−−−−→ T Grp

W A

∼=
y y∼=

TFq ∩TW p TFq ∩TW p −−−−−→ Grp
TW T A

then shows that the isomorphism (1.4.2.1) relative to W sends the filtration GrTW (TF) to
the filtration T(GrW (F)).

1.4.4. Let K be a complex of objects of A . The hypercohomology objects Ri T(K) are
calculated as follows:

a. We choose a quasi-isomorphism i : K → K such that the components of K ′ are acyclic
for T. For example, we can take K ′ to be the simple complex associated to an injec-
tive Cartan–Eilenberg resolution of K .

b. We set
Ri T(K)=Hi(T(K ′)).

We can show that Ri T(K) does not depend on the choice of K ′, but depends functorially
on K , and that a quasi-isomorphism f : K1 → K2 induces isomorphisms

Ri T( f ) : Ri T(K1)→Ri T(K2).

1.4.5. Let F be a biregular filtration of K . A T-acyclic filtered resolution of K is a fil-
tered quasi-isomorphism i : K → K ′ from K to a filtered biregular complex such that the
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Grp(K ′n) are acyclic for T. If K ′ is such a resolution, then the K ′n are acyclic for T, and
the filtered complex (cf. (1.4.2)) T(K ′) defines a spectral sequence

Epq
1 =Rp+q T(Grp(K))⇒Rp+q T(K).

This is independent of the choice of K ′. We call this the hypercohomology spectral sequence
of the filtered complex K . It depends functorially on K , and a filtered quasi-isomorphism
induces an isomorphism of spectral sequences.

∣∣∣ p. 21
The differentials d1 of this spectral sequence are the connection morphisms defined by

the short exact sequences

0→Grp+1 K → F pK /F p+2K →Grp K → 0.

1.4.6. Let K be a complex.
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\section*{Introduction}\label{introduction}}
\addcontentsline{toc}{section}{Introduction}

\oldpage{5}\emph{Work presented as a doctoral thesis at l'Université d'Orsay.}

By Hodge, the cohomology space \(\operatorname{H}^n(X,\mathbb{C})\) of a compact Kähler variety \(X\) is endowed with a ``Hodge structure'' of weight \(n\), i.e.~a natural bigrading
\[
  \operatorname{H}^n(X,\mathbb{C})
  = \bigoplus_{p+q=n} \operatorname{H}^{p,q}
\]
that satisfies \(\overline{\operatorname{H}^{p,q}}=\operatorname{H}^{q,p}\).
We will show here that the complex cohomology of a non-singular, not necessarily compact, algebraic variety is endowed with a structure of a slightly more general type, which presents \(\operatorname{H}^n(X,\mathbb{C})\) as a ``successive extension'' of Hodge structures of decreasing weights, contained between \(2n\) and \(n\), whose Hodge numbers \(h^{p,q}=\dim\operatorname{H}^{p,q}\), are zero for both \(p>n\) and \(q>n\).

The reader will find an explanation in {[}\protect\hyperlink{ref-14}{5}{]} of the yoga that underlies this construction.

\oldpage{6}The proof, which is essentially algebraic, relies on one hand on Hodge theory, and on the other on Hironaka's resolution of singularities, which allows us, via a spectral sequence, ``to express'' the cohomology of a non-singular quasi-projective algebraic variety in terms of the cohomology of non-singular projective varieties.

\protect\hyperlink{section-1}{Section 1} contains, apart from reminders on filtrations gathered together for the ease of the reader, two key results:

\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\tightlist
\item
  \protect\hyperlink{theorem-1.2.10}{Theorem 1.2.10}, which will only be used via its corollary, \protect\hyperlink{theorem-2.3.5}{Theorem 2.3.5}, which gives the fundamental properties of ``mixed Hodge structures.''
\item
  The ``two filtrations lemma,'' \protect\hyperlink{lemma-1.3.16}{Lemma 1.3.16}.
\end{enumerate}

\protect\hyperlink{section-2}{Section 2} recalls Hodge theory and introduces mixed Hodge structures.

The heart of this work is \protect\hyperlink{subsection-3.2}{§3.2}, which defines the mixed Hodge structure of \(\operatorname{H}^n(X,\mathbb{C})\), and establishes some degenerations of spectral sequences.

\protect\hyperlink{section-4}{Section 4} gives diverse applications, all following from \protect\hyperlink{theorem-4.1.1}{Theorem 4.1.1} and the theory of the \((K/k)\)-trace, for the resulting Hodge structures (\protect\hyperlink{corollary-4.1.2}{Corollary 4.1.2}).
The principal ones are \protect\hyperlink{theorem-4.2.6}{Theorem 4.2.6} and \protect\hyperlink{corollary-4.4.15}{Corollary 4.4.15}.

\hypertarget{section-1}{%
\section{Filtrations}\label{section-1}}

\hypertarget{section-1.1}{%
\subsection{Filtered objects}\label{section-1.1}}

\leavevmode\hypertarget{chunk-1.1.1}{}%
\begin{rmenv}{1.1.1}
Let \({\mathscr{A}}\) be an abelian category.

\end{rmenv}

We will be considering \(\mathbb{Z}\)-filtrations, finite, in general, on the objects of \({\mathscr{A}}\):

\leavevmode\hypertarget{definition-1.1.2}{}%
\begin{rmenv}{1.1.2}
A \emph{decreasing} (resp. \emph{increasing}) \emph{filtration} \(F\) of an object \(A\) of \({\mathscr{A}}\) is a family \((F^n(A))_{n\in\mathbb{Z}}\) (resp. \((F_n(A))_{n\in\mathbb{Z}}\)) of sub-objects of \(A\) satisfying
\[
  \forall n,m
  \quad n\leqslant m \implies F^m(A)\subset F^n(A)
\]
(resp. \(n\leqslant m\implies F_n(A)\subset F_m(A)\)).

A \emph{filtered object} is an object endowed with a filtration.
When there is no chance of confusion, we often denote by the same letter filtrations on different objects of \({\mathscr{A}}\).

If \(F\) is a decreasing (resp. increasing) filtration on \(A\), then we set \(F^\infty(A)=0\) and \(F^{-\infty}(A)=A\) (resp. \(F_{-\infty}(A)=0\) and \(F_\infty(A)=A\)).

The \emph{shifted filtrations} of a decreasing filtration \(W\) are defined by
\[
  W[n]^p(A)
  = W^{n+p}(A)
\]
for \(n\in\mathbb{Z}\).

\end{rmenv}

\leavevmode\hypertarget{chunk-1.1.3}{}%
\begin{rmenv}{1.1.3}
If \(R\) is a decreasing (resp. increasing) filtration of \(A\), then the \(F_n(A)=F^{-n}(A)\) (resp the \(F^n(A)=F_{-n}(A)\)) form an increasing (resp. decreasing) filtration of \(A\).
\oldpage{7}This allows us in principal to consider only decreasing filtrations;
\emph{unless otherwise explicitly mentioned, when we say ``filtration'' we always mean ``decreasing filtration''}.

\end{rmenv}

\leavevmode\hypertarget{chunk-1.1.4}{}%
\begin{rmenv}{1.1.4}
A filtration \(F\) of \(A\) is said to be \emph{finite} if there exist \(n\) and \(m\) such that \(F^n(A)=A\) and \(F^m(A)=0\).

\end{rmenv}

\leavevmode\hypertarget{chunk-1.1.5}{}%
\begin{rmenv}{1.1.5}
A \emph{morphism} from a filtered object \((A,F)\) to a filtered object \((B,F)\) is a morphism \(f\) from \(A\) to \(B\) that satisfies \(f(F^n(A))\subset F^n(B)\) for all \(n\in\mathbb{Z}\).

Filtered objects (resp. finite filtered objects) of \({\mathscr{A}}\) form an additive category in which inductive limits and finite projective limits exist (and thus kernels, cokernels, images, and coimages of a morphism).

A morphism \(f\colon(A,F)\to(B,F)\) is said to be \emph{strict}, or \emph{strictly compatible with the filtrations}, if the canonical arrows from \(\operatorname{Coim}(f)\) to \(\operatorname{Im}(f)\) is an isomorphism of filtered objects (cf.~\protect\hyperlink{proposition-1.1.11}{(1.1.11)}).

\end{rmenv}

\leavevmode\hypertarget{chunk-1.1.6}{}%
\begin{rmenv}{1.1.6}
Let \((-)^\circ\) be the contravariant identity functor from \({\mathscr{A}}\) to the dual category \({\mathscr{A}}^\circ\).
If \((A,F)\) is a filtered object of \({\mathscr{A}}\), then the \((A/F^n(A))^\circ\) can be identified with sub-objects of \(A^\circ\).
The \emph{dual} filtration on \(A^\circ\) is defined by
\[
  F^n(A^\circ)
  = (A/F^{1-n})^\circ.
\]

The double dual of \((A,F)\) can be identified with \((A,F)\).
This construction identifies the dual of the category of filtered objects of \({\mathscr{A}}\) with the category of filtered objects of \({\mathscr{A}}^\circ\).

\end{rmenv}

\leavevmode\hypertarget{chunk-1.1.7}{}%
\begin{rmenv}{1.1.7}
If \((A,F)\) is a filtered object of \({\mathscr{A}}\), then its \emph{associated graded} is the object of \({\mathscr{A}}^\mathbb{Z}\) defined by
\[
  \operatorname{Gr}^n(A)
  = F^n(A)/F^{n+1}(A).
\]
The convention \protect\hyperlink{chunk-1.1.6}{(1.1.6)} is justified by the simple formula
\[
  \operatorname{Gr}^n(A^\circ)
  = \operatorname{Gr}^{-n}(A)^\circ
\]
which follows from the self-dual diagram
\textbf{!!TO-DO: diagram (1.1.7.1)!!}

\end{rmenv}

\leavevmode\hypertarget{chunk-1.1.8}{}%
\begin{rmenv}{1.1.8}
Let \((A,F)\) be a filtered object, and \(j\colon X\hookrightarrow A\) a sub-object of \(A\).
The \emph{filtration induced by \(F\)} (or simply \emph{induced filtration}) on \(X\) is the unique filtration on \(X\) such that \(j\) is strictly compatible with the filtrations;
we have
\[
  F^n(X)
  = j^{-1}(F^n(A))
  = X\cap F^n(A).
\]

Dually, the \emph{quotient filtration} on \(A/X\) (the unique filtration such that \(p\colon A\to A/X\) is strictly compatible with the filtrations) is given by
\[
  F^n(A/X)
  = p(F^n(A))
  \cong (X+F^n(A))/X
  \cong F^n(A)/(X\cap F^n(A)).
\]

\end{rmenv}

\leavevmode\hypertarget{lemma-1.1.9}{}%
\begin{itenv}{Lemma 1.1.9}
\oldpage{8}If \(X\) and \(Y\) are sub-objects of \(A\), with \(X\subset Y\), then on \(Y/X\xrightarrow{\sim}\operatorname{Ker}(A/X\to A/Y)\) the quotient filtration of \(Y\) agrees with that induced by that of \(A/X\).
In the diagram
\textbf{!!TO-DO: diagram!!}
the arrows are strict.

\end{itenv}

\leavevmode\hypertarget{chunk-1.1.10}{}%
\begin{rmenv}{1.1.10}
We call the filtration \protect\hyperlink{lemma-1.1.9}{(1.1.9)} on \(Y/X\) the \emph{filtration induced by that of \(A\)} (or simply the \emph{induced filtration}).
By \protect\hyperlink{lemma-1.1.9}{(1.1.9)}, its definition is self-dual.

In particular, if \(\Sigma\colon A\xrightarrow{f}B\xrightarrow{G}C\) is a \textbf{!!TO-DO: o-suite?!!} sequence, and if \(B\) is filtered, then \(\operatorname{H}(\Sigma)=\operatorname{Ker}(g)/\operatorname{Im}(f)=\operatorname{Ker}(\operatorname{Coker}(f)\to\operatorname{Coim}(g))\) is endowed with a canonical induced filtration.

\end{rmenv}

The reader can show that:

\hypertarget{proposition-1.1.11}{}
\begin{itenv}{Proposition 1.1.11}

---

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\item
  Let \(f\colon(A,F)\to(B,F)\) be a morphism of filtered objects with finite filtrations.
  For \(f\) to be strict, it is necessary and sufficient that the sequence
  \[
   0
   \to \operatorname{Gr}(\operatorname{Ker}(f))
   \to \operatorname{Gr}(A)
   \to \operatorname{Gr}(B)
   \to \operatorname{Gr}(\operatorname{Coker}(f))
   \to 0
    \]
  be exact.
\item
  Let \(\sigma\colon(A,F)\to(B,F)\to(C,F)\) be a \textbf{!!TO-DO: o-suite?!!} sequence of strict morphisms.
  We then have
  \[
  \operatorname{H}(\operatorname{Gr}(\Sigma))
  \cong \operatorname{Gr}(\operatorname{H}(\Sigma))
    \]
  canonically.
  In particular, if \(\Sigma\) is exact in \({\mathscr{A}}\), then \(\operatorname{Gr}(\Sigma)\) is exact in \({\mathscr{A}}^\mathbb{Z}\).
\end{enumerate}

\end{itenv}

In a category of modules, to say that a morphism \(f\colon(A,F)\to(B,F)\) is strict implies that every \(b\in B\) of filtration \(\geqslant n\) (i.e.~\(b\in F^n(B)\)) that is in the image of \(A\) is already in the image of \(F^n(A)\):
\[
  f(F^n(A))
  = f(A)\cap F^n(B).
\]

\leavevmode\hypertarget{chunk-1.1.12}{}%
\begin{rmenv}{1.1.12}
If \(\otimes\colon{\mathscr{A}}_1\times\ldots\times{\mathscr{A}}_n\to{\mathscr{B}}\) is a multiadditive right-exact functor, and if \(A_i\) is an object of finite filtration of \({\mathscr{A}}_i\) (for \(1\leqslant i\leqslant n\)), then we define a filtration on \(\bigotimes_{i=1}^n A_i\) by
\[
  F^k(\bigotimes_{i=1}^n A_i)
  = \sum_{\sum k_i=k} \operatorname{Im}(\bigotimes_{i=1}^n F^{k_i}(A_i)\to\bigotimes_{i=1}^n A_i)
\]
(a sum of sub-objects).

Dually, if \(H\) is left-exact, then we set
\[
  F^k(H(A_i))
  = \bigcap_{\sum k_i=k} \operatorname{Ker}(H(A_i)\to H(A_i/F^{k_i}(A_i))).
\]

\oldpage{9}If \(H\) is exact, then the two definitions are equivalent.

We extend these definitions to contravariant functors in certain variables by \protect\hyperlink{chunk-1.1.6}{(1.1.6)}.
In particular, for the left-exact functor \(\operatorname{Hom}\), we set
\[
  F^k(\operatorname{Hom}(A,B))
  = \{f\colon A\to B \mid f(F^n(A))\subset F^{n+k}(B)\,\,\forall n\}.
\]
We thus have
\[
  \operatorname{Hom}((A,F),(B,F))
  = F^0(\operatorname{Hom}(A,B)).
\]

Under the above hypotheses, we have obvious morphisms
\[
  \begin{aligned}
    \bigotimes_{i=1}^n \operatorname{Gr}(A_i)
    &\to \operatorname{Gr}(\bigotimes_{i=1}^n A_i)
  \\\operatorname{Gr}H(A_i)
    &\to H(\operatorname{Gr}(A_i)).
  \end{aligned}
\]
If \(H\) is exact, then these are isomorphisms and inverse to one another.

These constructions are compatible with composition of functors, in a sense whose details we leave to the reader.

\end{rmenv}

\hypertarget{section-1.2}{%
\subsection{Opposite filtrations}\label{section-1.2}}

\leavevmode\hypertarget{chunk-1.2.1}{}%
\begin{rmenv}{1.2.1}
Let \(A\) be an object of \({\mathscr{A}}\) endowed with filtrations \(F\) and \(G\).
By definition, \(\operatorname{Gr}_F^n(A)\) is a quotient of a sub-object of \(A\) and, as such, is endowed with a filtration induced by \(G\) \protect\hyperlink{chunk-1.1.10}{(1.1.10)}.
Passing to the associated graded defines a bigraded object \((\operatorname{Gr}_G^n\operatorname{Gr}_F^m(A))_{n,m\in\mathbb{Z}}\).
By a lemma of Zassenhaus, \(\operatorname{Gr}_G^n\operatorname{Gr}_F^m(A)\) and \(\operatorname{Gr}_F^m\operatorname{Gr}_G^n(A)\) are canonically isomorphic: if we define the induced filtrations \protect\hyperlink{chunk-1.1.10}{(1.1.10)} as quotient filtrations of the induced filtrations on a sub-object, then we have
\[
  \begin{aligned}
    \operatorname{Gr}_G^n\operatorname{Gr}_F^m(A)
    \cong (F^m(A)\cap G^n(A)) &/ ((F^{m+1}(A)\cap G^n(A)) + (F^m(A)\cap G^{n+1}(A)))
  \\&=
  \\\operatorname{Gr}_F^m\operatorname{Gr}_G^n(A)
    \cong (G^n(A)\cap F^m(A)) &/ ((G^{n+1}(A)\cap F^m(A)) + (G^n(A)\cap F^{m+1}(A)))
  \end{aligned}
\]

\end{rmenv}

\leavevmode\hypertarget{chunk-1.2.2}{}%
\begin{rmenv}{1.2.2}
Let \(H\) be a third filtration of \(A\).
It induces a filtration on \(\operatorname{Gr}_F(A)\), and thus on \(\operatorname{Gr}_G\operatorname{Gr}_F(A)\).
It also induces a filtration on \(\operatorname{Gr}_F\operatorname{Gr}_G(A)\).
We note that these filtrations do not in general correspond to one another under the isomorphism \protect\hyperlink{chunk-1.2.1}{(1.2.1)}.
In the expression \(\operatorname{Gr}_H\operatorname{Gr}_G\operatorname{Gr}_F(A)\), \(G\) and \(H\) thus play a symmetric role, but not \(F\) and \(G\).

\end{rmenv}

\leavevmode\hypertarget{definition-1.2.3}{}%
\begin{rmenv}{1.2.3}
Two \emph{finite} filtrations \(F\) and \(\overline{F}\) on \(A\) are said to be \emph{\(n\)-opposite} if \(\operatorname{Gr}_F^p\operatorname{Gr}_{\overline{F}}^q(A)=0\) for \(p+q\neq n\).

\end{rmenv}

\leavevmode\hypertarget{chunk-1.2.4}{}%
\begin{rmenv}{1.2.4}
If \(A^{p,q}\) is a bigraded object of \({\mathscr{A}}\) such that

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\tightlist
\item
  \(A^{p,q}=0\) except for a finite number of pairs \((p,q)\), and
\item
  \(A^{p,q}=0\) for \(p+q\neq n\)
\end{enumerate}

\oldpage{10}then we define two \(n\)-opposite filtrations of \(A=\sum_{p,q}A^{p,q}\) by setting
\[
  F^p(A)
  = \sum_{p'\geqslant p} A^{p',q'}
\tag{1.2.4.1}
\]
\[
  \overline{F}^q(A)
  = \sum_{q'\geqslant q} A^{p',q'}.
\tag{1.2.4.2}
\]
We have
\[
  \operatorname{Gr}_F^p\operatorname{Gr}_{\overline{F}}^q(A)
  = A^{p,q}.
\tag{1.2.4.3}
\]

\end{rmenv}

Conversely:

\hypertarget{proposition-1.2.5}{}
\begin{itenv}{Proposition 1.2.5}

---

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\item
  Let \(F\) and \(\overline{F}\) be finite filtrations on \(A\).
  For \(F\) and \(\overline{F}\) to be \(n\)-opposite, it is necessary and sufficient that, for all \(p,q\),
  \[
   [p+q=n+1]
   \implies [F^p(A)\oplus\overline{F}^q(A) \xrightarrow{\sim}A].
    \]
\item
  If \(F\) and \(\overline{F}\) are \(n\)-opposite, and if we set
  \[
  \begin{cases}
    A^{p,q} = 0
    &\text{for }p+q\neq n
  \\A^{p,q} = F^p(A)\cap\overline{F}^q(A)
    &\text{for }p+q=n
  \end{cases}
    \]
  then \(A\) is the direct sum of the \(A^{p,q}\), and \(F\) and \(\overline{F}\) come from the bigrading \(A^{p,q}\) of \(A\) by the procedure of \protect\hyperlink{chunk-1.2.4}{(1.2.4)}.
\end{enumerate}

\end{itenv}

\textbf{!!TO-DO: why is the following proof not appearing in the PDF version?!!}

\leavevmode\hypertarget{chunk-1.2.6}{}%
\begin{rmenv}{1.2.6}
The constructions \protect\hyperlink{chunk-1.2.4}{(1.2.4)} and \protect\hyperlink{proposition-1.2.5}{(1.2.5)} establish equivalences of categories that are quasi-inverse to one another between objects of \({\mathscr{A}}\) endowed with two finite \(n\)-opposite filtrations and bigraded objects of \({\mathscr{A}}\) of the type considered in \protect\hyperlink{chunk-1.2.4}{(1.2.4)}.

\end{rmenv}

\leavevmode\hypertarget{definition-1.2.7}{}%
\begin{itenv}{Definition 1.2.7}
\oldpage{11}Three \emph{finite} filtrations \(W\), \(F\), and \(\overline{F}\) on \(A\) are said to be \emph{opposite} if
\[
  \operatorname{Gr}_F^p\operatorname{Gr}_{\overline{F}}^q\operatorname{Gr}_W^n(A)
  = 0
\]
for \(p+q+n\neq0\).

\end{itenv}

This condition is symmetric in \(F\) and \(\overline{F}\).
It implies that \(F\) and \(\overline{F}\) induce on \(W^n(A)/W^{n+1}(A)\) two \((-n)\)-opposite filtrations.
We set
\[
  A^{p,q}
  = \operatorname{Gr}_F^p\operatorname{Gr}_{\overline{F}}^q\operatorname{Gr}_F^{-p-q}(A)
\]
whence decompositions \protect\hyperlink{chunk-1.2.4}{(1.2.4)}, \protect\hyperlink{proposition-1.2.5}{(1.2.5)}
\[
  W^n(A)/W^{n+1}(A)
  = \bigoplus_{p+q=-n} A^{p,q}
\tag{1.2.7.1}
\]
which makes \(\operatorname{Gr}_W(A)\) into a bigraded object.

\leavevmode\hypertarget{lemma-1.2.8}{}%
\begin{itenv}{Lemma 1.2.8}
Let \(W\), \(F\), and \(\overline{F}\) be three finite opposite filtrations, and \(\sigma\) a sequence \((p_i,q_i)_{i\geqslant 0}\) pairs of integers satisfying

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\tightlist
\item
  \(p_i\leqslant p_j\) and \(q_i\leqslant q_j\) for \(i\geqslant j\), and
\item
  \(p_i+q_i=p_0+q_0-i+1\) for \(i>0\).
\end{enumerate}

Set \(p=p_0\), \(q=q_0\), \(n=-p-q\), and
\[
  A_\sigma
  = \left( \sum_{0\leqslant i}(W^{n+i}(A)\cap F^{p_i}(A)) \right)
  \cap \left( \sum_{0\leqslant i}(W^{n+i}(A)\cap\overline{F}^{q_i}(A)) \right).
\]
Then the projection from \(W^n(A)\) to \(\operatorname{Gr}_W^n(A)\) induces an isomorphism
\[
  A_\sigma
  \xrightarrow{\sim}A^{p,q} \subset \operatorname{Gr}_W^n(A).
\]

\end{itenv}

\begin{proof}
We will prove by induction on \(k\) the following claim:

(\(*_k\)) The projection from \(W^n(A)/W^{n+k}\) to \(\operatorname{Gr}_W^n(A)\) induces an isomorphism from
\[
  \left(
  \left( \sum_{i<k} (W^{n+i}(A)\cap F^{p_i}(A)) + W^{n+k}(A) \right)
  \cap \left( \sum_{i<k} (W^{n+i}(A)\cap\overline{F}^{q_i}(A)) + W^{n+k}(A) \right)
  \right) / W^{n+k}(A)
  \]
to \(A^{p,q}\subset\operatorname{Gr}_W^n(A)\).

For \(k=1\), this is exactly the definition of \(A^{p,q}\).

By \protect\hyperlink{proposition-1.2.5}{(1.2.5), (i)} we have
\[
  F^{p_k}(\operatorname{Gr}_W^{n+k}(A)) \oplus \overline{F}^{q_k}(\operatorname{Gr}_W^{n+k}(A))
  \xrightarrow{\sim}\operatorname{Gr}_W^{n+k}(A).
\tag{1.2.8.1}
\]
Set
\[
  \begin{aligned}
    B &= \sum_{i<k} (W^{n+i}(A)\cap F^{p_i}(A))
  \\C &= \sum_{i<k} (W^{n+i}(A)\cap\overline{F}^{q_i}(A))
  \\B' &= (W^{n+k}(A)\cap F^{p_k}(A)) + W^{n+k+1}(A)
  \\C' &= (W^{n+k}(A)\cap\overline{F}^{q_k}(A)) + W^{n+k+1}(A)
  \\D &= W^{n+k}(A)
  \\E &= W^{n+k+1}(A).
  \end{aligned}
\]

\oldpage{12}Equation (1.2.8.1) can then be written as
\[
  \begin{aligned}
    B'+C' &= D
  \\B'\cap C' &= E.
  \end{aligned}
\]
We also have, since \(p_k\leqslant p_i\) (for \(i\leqslant k\)),
\[
  B\cap D
  \subset F^{p_k}(A) \cap W^{n+k}(A)
  \subset B'
\]
and, since \(q_k\leqslant q_i\) (for \(i\leqslant k\)),
\[
  C\cap D
  \subset \overline{F}^{q_k}(A)\cap W^{n+k}(A)
  \subset C'.
\]

The claim (\(*_{k+1}\)) and then follows from (\(*_k\)) and the following lemma.
\end{proof}

\leavevmode\hypertarget{lemma-1.2.9}{}%
\begin{itenv}{Lemma 1.2.9}
Let \(B\), \(C\), \(B'\), \(C'\), \(D\), and \(E\) be sub-objects of \(A\).
Suppose that
\[
  \begin{gathered}
    B'+C' = D
    \qquad B'\cap C' = E
  \\B\cap D \subset B'
    \qquad C\cap D \subset C'.
  \end{gathered}
\]
Then
\[
  ((B+B')\cap(C+C'))/E
  \xrightarrow{\sim}((B+D)\cap(C+D))/D.
\]

\end{itenv}

\begin{proof}
To prove surjectivity, we write
\[
  \begin{aligned}
    ((B+B')\cap(C+C'))+D
    &= (((B+B')\cap(C+C'))+B')+C'
  \\&= ((B+B')\cap(C+C'+B'))+C'
  \\&= (B+B'+C')\cap(C+C'+B')
  \\&= (B+D)\cap(C+D).
  \end{aligned}
\]

To prove injectivity, we write
\[
  (B+B')\cap(C+C')\cap D
  = ((B+B')\cap D)\cap((C+C')\cap D).
\]
Since \(B'\subset D\), we have
\[
  \begin{aligned}
    (B+B')\cap D
    &= (B\cap D)+B'
  \\&= B'
  \end{aligned}
\]
and similarly
\[
  (C+C')\cap D
  = C'
\]
and
\[
  \begin{aligned}
    (B+B')\cap(C+C')\cap D
    &= B'\cap C'
  \\&= E.
  \end{aligned}
\]
\end{proof}

This finishes the proof of \protect\hyperlink{lemma-1.2.8}{(1.2.8)}, noting that \protect\hyperlink{lemma-1.2.8}{(1.2.8)} is equivalent to (\(*_k\)) for large \(k\).

\hypertarget{theorem-1.2.10}{}
\begin{itenv}{Theorem 1.2.10}

Let \({\mathscr{A}}\) be an abelian category, and provisionally denote by \({\mathscr{A}}'\) the category of objects of \({\mathscr{A}}\) endowed with three opposite filtrations \(W\), \(F\), and \(\overline{F}\).
The morphisms in \({\mathscr{A}}'\) are the morphisms of \({\mathscr{A}}\) that are compatible with the three filtrations.

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  \({\mathscr{A}}'\) is an abelian category.
\item
  The kernel (resp. cokernel) of an arrow \(f\colon A\to B\) in \({\mathscr{A}}'\) is the kernel (resp. cokernel) of \(f\) in \({\mathscr{A}}\), endowed with the filtrations induced by those of \(A\) (resp. the quotients of those of \(B\)).
\item
  Every morphism \(f\colon A\to B\) in \({\mathscr{A}}'\) is strictly compatible with the filtrations \(W\), \(F\), and \(\overline{F}\);
  the morphism \(\operatorname{Gr}_W(f)\) is compatible with the bigradings of \(\operatorname{Gr}_W(A)\) and \(\operatorname{Gr}_W(B)\);
  the morphisms \(\operatorname{Gr}_F(f)\) and \(\operatorname{Gr}_{\overline{F}}(f)\) are strictly compatible with the filtration induced by \(W\).
\item
  The ``forget the filtrations'' functors, \(\operatorname{Gr}_W\), \(\operatorname{Gr}_F\), and \(\operatorname{Gr}_{\overline{F}}\), and
  \[
  \begin{gathered}
    \operatorname{Gr}_W\operatorname{Gr}_F
    \simeq \operatorname{Gr}_F\operatorname{Gr}_W
  \\\simeq \operatorname{Gr}_{\overline{F}}\operatorname{Gr}_F\operatorname{Gr}_W
  \\\simeq \operatorname{Gr}_{\overline{F}}\operatorname{Gr}_W
    \simeq \operatorname{Gr}_W\operatorname{Gr}_{\overline{F}}
  \end{gathered}
    \]
  from \({\mathscr{A}}'\) to \({\mathscr{A}}\) are exact.
\end{enumerate}

\end{itenv}

\oldpage{13}Denote by \(\sigma_0(p,q)\) and \(\sigma_1(p,q)\) the sequences
\[
  \begin{aligned}
    \sigma_0(p,q)
    &= (p,q), (p,q), (p,q-1), (p,q-2), (p,q-3), \ldots
  \\\sigma_0(p,q)
    &= (p,q), (p,q), (p-1,q), (p-2,q), (p-3,q), \ldots
  \end{aligned}
\]
and, with the notation of \protect\hyperlink{lemma-1.2.8}{(1.2.8)}, set
\[
  A_i^{p,q}
  = A_{\sigma_i(p,q)}
  \qquad\text{(for }i=0,1\text{)}.
\]

If \(f\colon A\to B\) is compatible with \(W\), \(F\), and \(\overline{F}\), then we have
\[
  f(A_i^{p,q})
  \subset B_i^{p,q}
  \qquad\text{(for }i=0,1\text{)}.
\tag{1.2.10.1}
\]
Claim (iii) then follows from the following lemma:

\leavevmode\hypertarget{lemma-1.2.11}{}%
\begin{itenv}{Lemma 1.2.11}
The \(A_i^{p,q}\) give a bigrading of \(A\).
We have
\[
  W^n(A)
  = \sum_{n+p+q\leqslant 0} A_i^{p,q}
  \qquad\text{(for }i=0,1\text{)}
\tag{1.2.11.1}
\]
\[
  F^p(A)
  = \sum_{p'\geqslant p} A_0^{p',q'}
\tag{1.2.11.2}
\]
\[
  \overline{F}^q(A)
  = \sum_{q'\geqslant q} A_1^{p',q'}.
\tag{1.2.11.3}
\]

\end{itenv}

\begin{proof}
By symmetry, it suffices to prove the claims concerning \(i=0\).
Set \(A_0=\bigoplus A_0^{p,q}\) and define filtrations \(W\) and \(F\) on \(A_0\) by the equations of \protect\hyperlink{lemma-1.2.11}{(1.2.11)}.
The canonical map \(i\) from \(A_0\) to \(A\) is compatible with the filtrations \(W\) and \(F\).
Furthermore, by \protect\hyperlink{lemma-1.2.8}{(1.2.8)}, \(\operatorname{Gr}_W(i)\) is an isomorphism, and induces isomorphisms of graded objects
\[
  \sum_{p+q=n} A_0^{p,q}
  \xrightarrow{\sim}\operatorname{Gr}_W^{-n}(A)
  = \sum_{p+q=n} A^{p,q}.
\tag{1.2.11.4}
\]
The morphism \(i\) is thus an isomorphism, and the \(A_0^{p,q}\) give a bigrading of \(A\).

Equation (1.2.11.1) then says that \(\operatorname{Gr}_W(i)\) is an isomorphism.
By (1.2.11.4), \(\operatorname{Gr}_F\operatorname{Gr}_W(i)\) is an isomorphism, and thus so too are \(\operatorname{Gr}_W\operatorname{Gr}_F(i)\) and \(\operatorname{Gr}_F(i)\).
Equation (1.2.11.2) then follows.
\end{proof}

\leavevmode\hypertarget{chunk-1.2.12}{}%
\begin{rmenv}{1.2.12}
We now prove \protect\hyperlink{theorem-1.2.10}{(1.2.10)}.
Let \(f\colon A\to B\) in \({\mathscr{A}}'\) and endow \(K=\operatorname{Ker}(f)\) with the filtrations induced by those of \(A\).
By \protect\hyperlink{lemma-1.2.11}{(1.2.11)}, \(\operatorname{Gr}_W(K)\hookrightarrow\operatorname{Gr}_W(A)\);
furthermore, the filtration \(F\) (resp. \(\overline{F}\)) on \(K\) induces on \(\operatorname{Gr}_W(K)\) the inverse image filtration of the filtration \(F\) on \(\operatorname{Gr}_W(A)\).
The sub-object \(\operatorname{Gr}_W(K)\) of \(\operatorname{Gr}_W(A)\) is then compatible with the bigrading of \(\operatorname{Gr}_W(A)\):
\[
  \operatorname{Gr}_W(K)
  = \bigoplus_{p,q}(\operatorname{Gr}_W(K)\cap A^{p,q}).
\]

We thus deduce that
\[
  \operatorname{Gr}_F^p\operatorname{Gr}_{\overline{F}}^q\operatorname{Gr}_W^n(K)
  \hookrightarrow \operatorname{Gr}_F^p\operatorname{Gr}_{\overline{F}}^q\operatorname{Gr}_W^n(A);
\]
\oldpage{14}the filtrations of \(W\), \(F\), and \(\overline{F}\) on \(K\) are thus opposite, and \(K\) is a kernel of \(f\) in \({\mathscr{A}}'\).
This, combined with the dual result, proves (ii).

If \(f\) is an arrow of \({\mathscr{A}}'\), then the canonical morphism from \(\operatorname{Coim}(f)\) to \(\operatorname{Im}(f)\) is an isomorphism in \({\mathscr{A}}\);
by (iii), it is also an isomorphism in \({\mathscr{A}}'\), which is thus abelian.

The ``forget the filtrations'' functor is exact by (ii).
The exactness of the other functors in (iv) follows immediately from (ii), (iii), and \protect\hyperlink{proposition-1.1.11}{(1.1.11), (i) or (ii)}.

\end{rmenv}

\leavevmode\hypertarget{chunk-1.2.13}{}%
\begin{rmenv}{1.2.13}
Let \(A\) be an object of \({\mathscr{A}}\) endowed with a finite \emph{increasing} filtration \(W_\bullet\), and two finite decreasing filtrations \(F\) and \(\overline{F}\).
The construction \protect\hyperlink{chunk-1.1.3}{(1.1.3)} associates to \(W_\bullet\) a decreasing filtration \(W^\bullet\).
We say that the filtrations \(W_\bullet\), \(F\), and \(\overline{F}\) are \emph{opposite} if the filtrations \(W^\bullet\), \(F\), and \(\overline{F}\) are, i.e.~if, for all \(n\), the filtrations induced by \(F\) and \(\overline{F}\) on
\[
  \operatorname{Gr}_n^W(A)
  = W_n(A)/W_{n-1}(A)
\]
are \(n\)-opposite.

Theorem \protect\hyperlink{theorem-1.2.10}{(1.2.10)} translates trivially to this variation.

\end{rmenv}

\hypertarget{section-1.3}{%
\subsection{The two filtrations lemma}\label{section-1.3}}

\leavevmode\hypertarget{chunk-1.3.1}{}%
\begin{rmenv}{1.3.1}
Let \(K\) be a differential complex of objects of \({\mathscr{A}}\), endowed with a filtration \(F\).
The filtration is said to be \emph{biregular} if it induces a finite filtration on each component of \(K\).

We recall the definition of the terms \(E_r^{pq}(K,F)\), or simply \(E_r^{pq}\), of the spectral sequence defined by \(F\).
We set
\[
  Z_r^{pq}
  = \operatorname{Ker}(d\colon F^p(K^{p+q})\to F^{p+q+1}/F^{p+r}(K^{p+q+1}))
\]
and dually we define \(B_r^{pq}\) by the formula
\[
  K^{p+q}/B_r^{pq}
  = \operatorname{Coker}(d\colon F^{p-r+1}(K^{p+q+1})\to K^{p+q}/F^{p+1}(K^{p+q})).
\]
These formulas still make sense for \(r=\infty\).

We note that the use here of the notation \(B_r^{pq}\) is different to that of Godement {[}\protect\hyperlink{ref-15}{6}{]}.

We have, by definition:
\[
  E_r^{pq}
  = \operatorname{Im}(Z_r^{pq}\to K^{p+q}/B_r^{pq})
\tag{1.3.1.1}
\]
\[
  = Z_r^{pq}/(B_r^{pq}\cap Z_r^{pq})
\tag{1.3.1.2}
\]
\[
  = \operatorname{Ker}(K^{p+q}/B_r^{pq}\to K^{p+q}/(Z_r^{pq}+B_r^{pq})).
\tag{1.3.1.3}
\]
We can thus write
\[
  \begin{aligned}
    B_r^{p\bullet}\cap Z_r^{p\bullet}
    &\coloneqq (dF^{p-r+1}+F^{p+1}) \cap (d^{-1}F^{p+r}\cap F^p)
  \\&= (dF^{p-r+1}\cap F^p) + (F^{p+1}\cap d^{-1}F^{p+r})
  \end{aligned}
\tag{1.3.1.4}
\]
since \(dF^{p-r+1}\subset d^{-1}F^{p+r}\) and \(F^{p+1}\subset F^p\).

\oldpage{15}For \(r<\infty\), the \(E_r\) form a complex graded by the degree \(p-r(p+q)\), and \(E_{r+1}\) can be expressed as the cohomology of this complex:
\[
  E_{r+1}^{pq}
  = \operatorname{H}(E_r^{p-r,q+r-1} \xrightarrow{d_r} E_r^{pq} \xrightarrow{d_r} E_r^{p+r,q-r+1}).
\tag{1.3.1.5}
\]

For \(r=0\), we have
\[
  E_0^{\bullet\bullet}
  = \operatorname{Gr}_F^\bullet(K^\bullet).
\tag{1.3.1.6}
\]

\end{rmenv}

\hypertarget{proposition-1.3.2}{}
\begin{itenv}{Proposition 1.3.2}

Let \(K\) be a complex endowed with a biregular filtration \(F\).
The following conditions are equivalent:

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  The spectral sequence defined by \(F\) degenerates (\(E_1=E_\infty\)).
\item
  The morphisms \(d\colon K^i\to K^{i+1}\) are strictly compatible with the filtrations.
\end{enumerate}

\end{itenv}

\begin{proof}
We will prove this in the case where \({\mathscr{A}}\) is a category of modules.
For fixed \(p\) and \(q\), the hypothesis that the arrows \(d_r\) with domains \(E_r^{pq}\) be zero for \(r\geqslant 1\) implies that, if \(x\in F^p(K^{p+q})\) satisfies \(dx\in F^{p+1}(K^{p+q+1})\), then there exists \(y\in K^{p+q}\) such that \(dy=0\) and such that \(x\) and \(y\) have the same image in \(E_1^{pq}\).
Modifying \(y\) by a boundary, and setting \(z=x-y\), we then have
\[
  \forall x\in F^p(K^{p+q})
  \left[
    dx\in F^{p+1}(K^{p+q+1})
    \implies \exists z\text{ s.t. } z\in F^{p+1}(K^{p+q}) \text{ and } dz=dx
  \right]
\]
or, in other words,
\[
  F^{p+1}(K^{p+q+1}) \cap dF^p(K^{p+q})
  = dF^{p+1}(K^{p+q}).
\tag{1}
\]

If this condition is satisfied for arbitrary \(p\) and \(q\), then by induction on \(r\) we have
\[
  F^{p+r} \cap dF^p
  = dF^{p+r}
\]
which, for large \(p+r\), can be written as
\[
  F^p \cap dK
  = dF^p.
\tag{2}
\]

Claim (2) trivially implies (1), and is equivalent to (ii), which proves the proposition.
\end{proof}

\leavevmode\hypertarget{chunk-1.3.3}{}%
\begin{rmenv}{1.3.3}
If \((K,F)\) is a filtered complex, we denote by \(\operatorname{Dec}(K)\) the complex \(K\) endowed with the \emph{shifted filtration}
\[
  \operatorname{Dec}(F)^p K^n
  = Z_1^{p+n,-p}.
\]

This filtration is compatible with the differentials:
\[
  \begin{aligned}
    dZ_1^{p+n,-p}
    &\subset F^{p+n+1}(K^{n+1}) \cap \operatorname{Ker}(d)
  \\&\subset Z_\infty^{p+n+1,-p}
  \\&\subset Z_1^{p+n+1,-p}.
  \end{aligned}
\]

Since
\[
  \begin{aligned}
    Z_1^{p+1+n,-p-1}
    &\subset F^{p+1+n}(K^n)
  \\&\subset B_1^{p+n,-p}
  \\&\subset Z_1^{p+n,-p}
  \end{aligned}
\tag{1.3.3.1}
\]
the evident arrow from \(Z_1^{p+n,-p}/Z_1^{p+1+n,-p-1}\) to \(Z_1^{p+n,-p}/B_1^{p+n,-p}\) is a morphism
\[
  u\colon E_0^{p,n-p}(\operatorname{Dec}(K)) \to E_1^{p+n,-p}(K).
\tag{1.3.3.2}
\]

\end{rmenv}

\hypertarget{proposition-1.3.4}{}
\begin{itenv}{Proposition 1.3.4}

---

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  The morphisms (1.3.3.2) form a morphism of graded complexes from \(E_0(\operatorname{Dec}(K))\) to \(E_1(K)\).
\item
  This morphism induces an isomorphism on cohomology.
\item
  It induces step-by-step (via (1.3.1.5)) isomorphisms of graded complexes \(E_r(\operatorname{Dec}(K))\xrightarrow{\sim}E_{r+1}(K)\) (for \(r\geqslant 1\)).
\end{enumerate}

\end{itenv}

\begin{proof}
\oldpage{16}Let \(F'\) be the filtration on \(K\) defined by
\[
  {F'}^p(K^n)
  = \operatorname{Dec}(F)^{p-n}(K^n)
  = Z_1^{p,n-p}.
\]
We trivially have isomorphisms
\[
  E_r^{p,n-p}(\operatorname{Dec}(K))
  = E_{r+1}^{p+n,-p}(K,F')
\tag{1.3.4.1}
\]
that are compatible with the \(d_r\) and with (1.3.1.5).
The map \(u\) comes from (1.3.4.1) and from the identity map
\[
  (K,F') \to (K,F).
\]
This proves (i), and it remains to show that, for \(r\geqslant 2\),
\[
  E_r^{pq}(K,F')
  \xrightarrow{\sim}E_r^{pq}(K,F).
\]
We have
\[
  \begin{aligned}
    Z_r^{pq}(K,F')
    &= Z_r^{pq}(K,F)
    \qquad\text{(for }r\geqslant 1\text{)}
  \\Z_r^{pq}(K,F') \cap B_r^{pq}(K,F')
    &= Z_r^{pq}(K,F) \cap B_r^{pq}(K,F)
    \qquad\text{(for }r\geqslant 2\text{)}
  \end{aligned}
\]
and we can then apply (1.3.1.2).
\end{proof}

\leavevmode\hypertarget{chunk-1.3.5}{}%
\begin{rmenv}{1.3.5}
The construction \protect\hyperlink{chunk-1.3.3}{(1.3.3)} is not self-dual.
The dual construction consists of defining
\[
  \operatorname{Dec}^\bullet(F)^pK^n
  = B_1^{p+n-1,-p+1}.
\]
We then have morphisms
\[
  E_0^{p,n-p}(\operatorname{Dec}(K))
  \to E_1^{p+n,p}(K)
  \to E_0^{p,n-p}(\operatorname{Dec}^\bullet(K))
\]
and, for \(r\geqslant 1\), isomorphisms
\[
  E_r^{p,n-p}(\operatorname{Dec}(K))
  \xrightarrow{\sim}E_{r+1}^{p+n,p}(K)
  \xrightarrow{\sim}E_{r}^{p,n-p}(\operatorname{Dec}^\bullet(K)).
\]

\end{rmenv}

Recall that a morphism of complexes is said to be a \emph{quasi-isomorphism} if it induces an isomorphism on cohomology.

\hypertarget{definition-1.3.6}{}
\begin{rmenv}{Definition 1.3.6}

---

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  A morphism \(f\colon(K,F)\to(K',F')\) of filtered complexes with biregular filtrations is a \emph{filtered quasi-isomorphism} if \(\operatorname{Gr}_F(f)\) is a quasi-isomorphism, i.e.~if the \(E_1^{pq}(f)\) are isomorphisms.
\item
  A morphism \(f\colon(K,F,W)\to(K,F',W')\) of biregular bifiltered complexes is a \emph{bifiltered quasi-isomorphism} if \(\operatorname{Gr}_F\operatorname{Gr}_W(f)\) is a quasi-isomorphism.
\end{enumerate}

\end{rmenv}

\leavevmode\hypertarget{chunk-1.3.7}{}%
\begin{rmenv}{1.3.7}
Let \(K\) be a differential complex of objects of \({\mathscr{A}}\), endowed with two filtrations \(F\) and \(W\).
Let \(E_r^{pq}\) be the spectral sequence defined by \(W\).
The filtration \(F\) induces on \(E_r^{pq}\) various filtrations, which we will compare.

\end{rmenv}

\leavevmode\hypertarget{chunk-1.3.8}{}%
\begin{rmenv}{1.3.8}
Equation (1.3.1.2) identifies \(E_r^{pq}\) with a quotient of a sub-object of \(K^{p+q}\).
The \(E_r^{pq}\) term is thusly given by endowing with a filtration \(F_d\) induced by \(F\), called the \emph{first direct filtration}.

\end{rmenv}

\leavevmode\hypertarget{chunk-1.3.9}{}%
\begin{rmenv}{1.3.9}
Dually, Equation (1.3.1.3) identifies \(E_r^{pq}\) with a sub-object of a quotient of \(K^{p+q}\), whence a new filtration \(F_{d^*}\) induced by \(F\), called the \emph{second direct filtration}.

\end{rmenv}

\leavevmode\hypertarget{lemma-1.3.10}{}%
\begin{itenv}{Lemma 1.3.10}
\oldpage{17}On \(E_0\) and \(E_1\), we have \(F_d=F_{d^*}\).

\end{itenv}

\begin{proof}
For \(r=0,1\), we have \(B_r^{pq}\subset Z_r^{pq}\), and we apply (1.1.9).
\end{proof}

\hypertarget{chunk-1.3.11}{}
\begin{rmenv}{1.3.11}

Equation (1.3.1.5) identifies \(E_{r+1}^{pq}\) with a quotient of a sub-object of \(E_r^{pq}\).
We define the \emph{recurrent filtration} \(F_r\) on the \(E_r^{pq}\) by the conditions

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  On \(E_0^{pq}\), \(F_r=F_d=F_{d^*}\).
\item
  On \(E_{r+1}^{pq}\), the recurrent filtration is that induced by the recurrent filtration of \(E_r^{pq}\).
\end{enumerate}

\end{rmenv}

\leavevmode\hypertarget{chunk-1.3.12}{}%
\begin{rmenv}{1.3.12}
Definitions \protect\hyperlink{chunk-1.3.8}{(1.3.8)} and \protect\hyperlink{chunk-1.3.9}{(1.3.9)} still make sense for \(r=\infty\).
If the filtration on \(K\) is biregular, then the direct filtrations on \(E_\infty^{pq}\) coincide with those on \(E_r^{pq}=E_\infty^{pq}\) for large enough \(r\), and we define the recurrent filtration on \(E_\infty^{pq}\) as agreeing with that on \(E_r^{pq}\) for large enough \(r\).

The filtrations \(F\) and \(W\) each induce a filtration on \(H^\bullet(K)\), and \(E_\infty^{\bullet\bullet}=\operatorname{Gr}_W^\bullet(\operatorname{H}^\bullet(K))\).
The filtration \(F\) on \(\operatorname{H}^\bullet(K)\) then induces on \(E_\infty^{pq}\) a new filtration.

\end{rmenv}

\hypertarget{proposition-1.3.13}{}
\begin{itenv}{Proposition 1.3.13}

---

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  For the first direct filtration, the morphisms \(d_r\) are compatible with the filtrations.
  If \(E_{r+1}^{pq}\) is considered as a quotient of a sub-object of \(E_r^{pq}\), then the first direct filtration on \(E_{r+1}^{pq}\) is finer than the filtration \(F'\) induced by the first direct filtration on \(E_r^{pq}\)Y we have \(F_d(E_{r+1}^{pq})\subset F'(E_{r+1}^{pq})\).
\item
  Dually, the morphisms \(d_r\) are compatible with the second direct filtration, and the second direct filtration on \(E_{r+1}^{pq}\) is less fine than the filtration induced by that of \(E_r^{pq}\).
\item
  \(F_d(E_r^{pq})\subset F_r(E_r^{pq})\subset F_{d^*}(E_r^{pq})\).
\item
  On \(E_\infty^{pq}\), the filtration induced by the filtration \(F\) of \(\operatorname{H}^\bullet(K)\) \protect\hyperlink{chunk-1.3.12}{(1.3.12)} is finer than the first direct filtration and less fine than the second.
\end{enumerate}

\end{itenv}

\begin{proof}
Claim (i) is evident, (ii) is its dual, and (iii) follows by induction.
The first claim of (iv) is easy to verify, and the second is its dual.
\end{proof}

\leavevmode\hypertarget{chunk-1.3.14}{}%
\begin{rmenv}{1.3.14}
We denote by \(\operatorname{Dec}(K)\) (resp. \(\operatorname{Dec}^\bullet(K)\)) the complex \(K\) endowed with the filtrations \(\operatorname{Dec}(W)\) and \(F\) (resp. \(\operatorname{Dec}^\bullet(W)\) and \(F\)).

It is clear by (1.3.4.1) that the isomorphism \protect\hyperlink{proposition-1.3.4}{(1.3.4)} sends the first direct filtration on \(E_r(\operatorname{Dec}(K))\) to the second direct filtration on \(E_{r+1}(K)\) (for \(r\geqslant 1\)).
The dual isomorphism \protect\hyperlink{chunk-1.3.5}{(1.3.5)} sends the second direct filtration on \(E_r(\operatorname{Dec}^\bullet(K))\) to the second direct filtration on \(E_{r+1}(K)\).

\end{rmenv}

\hypertarget{lemma-1.3.15}{}
\begin{itenv}{Lemma 1.3.15}

If the filtration \(F\) is biregular, and if, on the \(\operatorname{Gr}_W^p(K)\), the morphisms \(d\) are strictly compatible with the filtration induced by \(F\), then

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  The morphism (1.3.3.2) of graded complexes filtered by \(F\)
  \[
   u\colon \operatorname{Gr}_{\operatorname{Dec}(W)}(K)
   \to E_1(K,W)
    \]
  is a filtered quasi-isomorphism.
\item
  Dually, the morphism \protect\hyperlink{chunk-1.3.5}{(1.3.5)}
  \[
  u\colon E_1(K,W)
  \to \operatorname{Gr}_{\operatorname{Dec}^\bullet(W)}(K)
    \]
  is a filtered quasi-isomorphism.
\end{enumerate}

\end{itenv}

\begin{proof}
It suffices, by duality, to prove (i).

\oldpage{18}By \protect\hyperlink{chunk-1.3.3}{(1.3.3)} and \protect\hyperlink{proposition-1.3.4}{(1.3.4)}, the complex \(E_1(K,W)\) filtered by \(F\) is a quotient of the filtered complex \(\operatorname{Gr}_{\operatorname{Dec}(W)}(K)\).
Let \(U\) be the filtered complex given by the kernel, which is acyclic by \protect\hyperlink{proposition-1.3.4}{(1.3.4), (ii)}.
The long exact sequence in cohomology associated to the exact sequence of complexes
\[
  0
  \to \operatorname{Gr}_F(U)
  \to \operatorname{Gr}_F(\operatorname{Gr}_{\operatorname{Dec}(W)}(K))
  \to \operatorname{Gr}_F(E_1(K,W))
  \to 0
\]
shows that \(u\) is a filtered quasi-isomorphism if and only if \(\operatorname{Gr}_F(U)\) is an acyclic complex.
By \protect\hyperlink{proposition-1.3.2}{(1.3.2)}, and since \(U\) is acyclic, this reduces to asking that the differentials of \(U\) be strictly compatible with the filtration \(F\).
From (1.3.3.1) we obtain that \(U\) is the sum over \(p\) of the complexes
\[
  (U^p)^n
  = B_1^{p+n,-p}/Z_1^{p+1+n,-p-1}
\]
endowed with the filtration induced by \(F\).

Each differential \(d\) of each of the complexes \(U^p\) fits into a commutative diagram of filtered objects of the following type, where, for simplicity, we have omitted the total or complementary degree:
\textbf{!!TO-DO: diagram!!}
By hypothesis, the morphism \((1)\) is strict.
Since the square \((2)\) is exactly the canonical decomposition of \((1)\), the arrow \((3)\) is a filtered isomorphism.
The arrows of the trapezium \((4)\) are isomorphisms;
they are thus filtered isomorphisms, since \((3)\) is a filtered isomorphism.
The fact that \((5)\) is a filtered isomorphism implies that \(d\) is strict.
This proves the lemma.
\end{proof}

\leavevmode\hypertarget{theorem-1.3.16}{}%
\begin{itenv}{Theorem 1.3.16}
Let \(K\) be a complex endowed with two filtrations, \(W\) and \(F\), with the filtration \(F\) biregular.
Let \(r_0\geqslant 0\) be an integer, and suppose that, for \(0\leqslant r<r_0\), the differentials of the graded complex \(E_r(K,W)\) are strictly compatible with the filtration \(F\).
Then, for \(r\leqslant r_0+1\), \(F_d=F_r=F_{d^*}\) on \(E_r^{pq}\).

\end{itenv}

\begin{proof}
We will prove the theorem by induction on \(r_0\).
For \(r_0=0\), the hypothesis is empty, and we apply \protect\hyperlink{lemma-1.3.10}{(1.3.10)} and \protect\hyperlink{proposition-1.3.13}{(1.3.13), (iii)}.
For \(r_0\geqslant 1\), by the inductive hypothesis, we have \(F_d=F_r=F_{d^*}\) on \(E_r^{pq}\) for \(r\leqslant r_0\).

\oldpage{19}By \protect\hyperlink{lemma-1.3.15}{(1.3.15)}, the morphism \(u\colon E_0(\operatorname{Dec}(K))\to E_1(K)\) is a filtered quasi-isomorphism.
It thus induces a filtered isomorphism from \(\operatorname{H}^\bullet(\operatorname{Dec}(K))\) to \(\operatorname{H}^\bullet(E_1(K))\):
\[
  u\colon (E_1(\operatorname{Dec}(K)),F_r)
  \xrightarrow{\sim}(E_2(K),F_r).
\]
Step-by-step, we thus deduce that the canonical isomorphism from \(E_s(\operatorname{Dec}(K))\) to \(E_{s+1}\) (for \(s\geqslant 1\)) is a filtered isomorphism for the recurrent filtration.

On \(E_1(\operatorname{Dec}(K))\), \(F_r=F_d\) \protect\hyperlink{lemma-1.3.10}{(1.3.10)}, and we already know \protect\hyperlink{chunk-1.3.14}{(1.3.14)} that \(u'\) is a filtered isomorphism
\[
  u'\colon (E_1(\operatorname{Dec}(K)),F_d)
  \xrightarrow{\sim}(E_2(K),F_d).
\]

On \(E_2(K)\), we thus have \(F_d=F_r\).
This, combined with the dual result, proves the theorem for \(r_0=1\).

Suppose that \(r_0\geqslant 2\).
Then the arrows \(d_1\) of \(E_1(K)\) are strictly compatible with the filtrations, and thus so too are the arrows \(d_0\) of \(E_0(\operatorname{Dec}(K))\) (indeed, \(u\) induces an isomorphism of spectral sequences, and we apply criterion \protect\hyperlink{proposition-1.3.2}{(1.3.2)}).

For \(0<s<r_0-1\), the isomorphism \((E_s(\operatorname{Dec}(K)),F_r)\cong(E_{s+1}(K),F_r)\) shows that the \(d_s\) are strictly compatible with the recurrent filtrations.

By the induction hypothesis, we thus have \(F_d=F_r\) on \(E_s(\operatorname{Dec}(K))\) for \(s\leqslant s_0\).
The isomorphism \((E_s(\operatorname{Dec}(K)),F_d)\cong(E_{s+1}(K),F_d)\) \protect\hyperlink{proposition-1.3.13}{(1.3.13)} then shows that \(F_d=F_r\) on \(E_r(K)\) for \(r\leqslant r_0+1\).
This, combined with the dual result, proves the theorem.
\end{proof}

\leavevmode\hypertarget{corollary-1.3.17}{}%
\begin{itenv}{Corollary 1.3.17}
Under the general hypotheses of \protect\hyperlink{theorem-1.3.16}{(1.3.16)}, suppose that, for all \(r\), the differentials \(d_r\) are strictly compatible with the recurrent filtrations on the \(E_r\).
Then, on \(E_\infty\), the filtrations \(F_d\), \(F_r\), and \(F_{d^*}\) agree, and coincide with the filtration induced by the filtration \(F\) of \(\operatorname{H}^\bullet(K)\).

\end{itenv}

\begin{proof}
This follows immediately from \protect\hyperlink{theorem-1.3.16}{(1.3.16)} and \protect\hyperlink{proposition-1.3.13}{(1.3.13), (iv)}.
\end{proof}

\hypertarget{section-1.4}{%
\subsection{Hypercohomology of filtered complexes}\label{section-1.4}}

In this section, we recall some standard constructions in hypercohomology.
We do not use the language of derived categories, which would be more natural here.

\emph{Throughout this entire section, by ``complex'' we mean ``bounded-below complex.''}

\leavevmode\hypertarget{chunk-1.4.1}{}%
\begin{rmenv}{1.4.1}
Let \(T\) be a left-exact functor from an abelian category \({\mathscr{A}}\) to an abelian category \({\mathscr{B}}\).
Suppose that every object of \({\mathscr{A}}\) injects into an injective object;
the derived functors \(\operatorname{R}^iT\colon{\mathscr{A}}\to{\mathscr{B}}\) are then defined.
An object \(A\) of \({\mathscr{A}}\) is said to be \emph{acyclic} for \(T\) if \(\operatorname{R}^iT(A)=0\) for \(i>0\).

\end{rmenv}

\leavevmode\hypertarget{chunk-1.4.2}{}%
\begin{rmenv}{1.4.2}
Let \((A,F)\) be a filtered object with finite filtration, and \(TF\) the filtration of \(TA\) by its sub-objects \(TF^p(A)\) (these are sub-objects since \(T\) is left exact).
If \(\operatorname{Gr}_F(A)\) is \(T\)-acyclic, then the \(F^p(A)\) are \(T\)-acyclic as successive extensions of \(T\)-acyclic objects.
The image under \(T\) of the sequence
\[
  0
  \to F^{p+1}(A)
  \to F^p(A)
  \to \operatorname{Gr}^p(A)
  \to 0
\]
\oldpage{20}is thus exact, and
\[
  \operatorname{Gr}_{FT}TA \xrightarrow{\sim}T\operatorname{Gr}_FA.
\tag{1.4.2.1}
\]

\end{rmenv}

\leavevmode\hypertarget{chunk-1.4.3}{}%
\begin{rmenv}{1.4.3}
Let \(A\) be an object endowed with finite filtrations \(F\) and \(W\) such that \(\operatorname{Gr}_F\operatorname{Gr}_W A\) are \(T\)-acyclic.
The objects \(\operatorname{Gr}_FA\) and \(\operatorname{Gr}_WA\) are then \(T\)-acyclic, as well as the \(F^q(A)\cap W^p(A)\).
The sequences
\[
  0
  \to T(F^q\cap W^{p+1})
  \to T(F^q\cap W^p)
  \to T((F^q\cap W^p)/(F^q\cap W^{p+1}))
  \to 0
\]
are thus exact, and \(T(F^q(\operatorname{Gr}_W^p(A)))\) is the image in \(T(\operatorname{Gr}_W^p(A))\) of \(T(F^p\cap W^q)\).
The diagram
\[
  \begin{CD}
    T(F^q\cap W^p) @>>> T(F^q\operatorname{Gr}_W^pA) @>>> T\operatorname{Gr}_W^pA
  \\@V{\cong}VV @. @VV{\cong}V
  \\TF^q\cap TW^p @= TF^q\cap TW^p @>>> \operatorname{Gr}_{TW}^pTA
  \end{CD}
\]
then shows that the isomorphism (1.4.2.1) relative to \(W\) sends the filtration \(\operatorname{Gr}_{TW}(TF)\) to the filtration \(T(\operatorname{Gr}_W(F))\).

\end{rmenv}

\leavevmode\hypertarget{chunk-1.4.4}{}%
\begin{rmenv}{1.4.4}
Let \(K\) be a complex of objects of \({\mathscr{A}}\).
The \emph{hypercohomology objects} \(\operatorname{R}^iT(K)\) are calculated as follows:

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\tightlist
\item
  We choose a quasi-isomorphism \(i\colon K\to K\) such that the components of \(K'\) are acyclic for \(T\).
  For example, we can take \(K'\) to be the simple complex associated to an injective Cartan--Eilenberg resolution of \(K\).
\item
  We set
  \[
   \operatorname{R}^iT(K)
   = \operatorname{H}^i(T(K')).
    \]
\end{enumerate}

We can show that \(\operatorname{R}^iT(K)\) does not depend on the choice of \(K'\), but depends functorially on \(K\), and that a quasi-isomorphism \(f\colon K_1\to K_2\) induces \emph{isomorphisms}
\[
  \operatorname{R}^iT(f)\colon
  \operatorname{R}^iT(K_1)
  \to \operatorname{R}^iT(K_2).
\]

\end{rmenv}
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\begin{rmenv}{1.4.5}
Let \(F\) be a biregular filtration of \(K\).
A \emph{\(T\)-acyclic filtered resolution} of \(K\) is a filtered quasi-isomorphism \(i\colon K\to K'\) from \(K\) to a filtered biregular complex such that the \(\operatorname{Gr}^p({K'}^n)\) are acyclic for \(T\).
If \(K'\) is such a resolution, then the \({K'}^n\) are acyclic for \(T\), and the filtered complex (cf.~\protect\hyperlink{chunk-1.4.2}{(1.4.2)}) \(T(K')\) defines a spectral sequence
\[
  E_1^{pq}
  = \operatorname{R}^{p+q}T(\operatorname{Gr}^p(K))
  \Rightarrow \operatorname{R}^{p+q}T(K).
\]
This is independent of the choice of \(K'\).
We call this the \emph{hypercohomology spectral sequence of the filtered complex \(K\)}.
It depends functorially on \(K\), and a filtered quasi-isomorphism induces an isomorphism of spectral sequences.

\oldpage{21}The differentials \(d_1\) of this spectral sequence are the connection morphisms defined by the short exact sequences
\[
  0
  \to \operatorname{Gr}^{p+1}K
  \to F^pK/F^{p+2}K
  \to \operatorname{Gr}^pK
  \to 0.
\]

\end{rmenv}
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\begin{rmenv}{1.4.6}
Let \(K\) be a complex.

\end{rmenv}
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